Power & Energy Monitoring in the Era of Green Energy

Weschler Instruments
Agenda

• Energy Trends
• Consumer Load Monitoring
• Commercial & Industrial Applications
• Industrial Products
• Test Equipment
Distributed Generation

- Solar
- Wind
- Geothermal
- Hydroelectric
Off-Grid Operation

- Mobile Applications
- Temporary Applications
- Isolated Sites
- Innovators
Smart Meters

- Automated Reading (AMR)
- Outage Notification
- Real Time Load Monitoring
- Variable Rate Billing
- Remote Load Shedding
Time of Day Rates

• Reduce Demand Peaks
• Defer Power Plant Construction
• Better Utilize Existing Transmission Lines
• Encourage Conservation
Real Time Load Management

- By Utility or Customer
- Prevent Overloads, Brownouts & Blackouts
- Avoid Power Plant Construction
- Defer New Transmission Lines
Cogeneration

• Combined Heat & Power
• Supply Local Electrical Need
• Sell Excess Power to Utility
• Standby Power
Higher Energy Costs

- Fuel Prices
- Emission Controls
- Delivery Fees
- Carbon Tax
- Escalating Rate Brackets
Mandatory Conservation

- Executive Order 13423 (2007)
- Energy Policy Act of 2005
- DOD Instruction 4170.11 (2005)
- LEED Certification (Green Building Initiative)
- Utility Demand Response programs
Energy Trends

- Distributed Generation
- Off-Grid Operation
- Smart Meters
- Variable (Time of Day) Rates
- Remote Load Management
- Higher Energy Costs
- Mandatory Conservation

Goal – Conserve energy & reduce fossil fuel use

Where & How Much ⇒ Need to Measure
Key Terms

- **Active Power**
 \[W = VA \quad (\text{DC source}) \]
 \[W = VA \cdot PF \quad (\text{AC source}) \]

- **Apparent Power**
 \[S = VA \]

- **Reactive Power**
 \[Q = VAr \]

- **Power Factor**
 \[PF = \frac{W}{VA} \quad \lambda \]

- **Active Energy**
 \[\text{kWh} \]

- **Demand (kW)**
 Average power for time interval

- **Fundamental**
 Mains frequency

- **Harmonic Order**
 Multiple of mains frequency
Waveforms

Motor Load

Switching Power Supply
Power Measurement ICs

- RMS Voltage, RMS Current
- Line Frequency
- Neutral Line Current
- Power Factor(s)
- Voltage Phase Angles
- Active/Reactive/Apparent Power
- Active/Reactive/Apparent Energy
- Fundamental/Harmonic Power
- Bi-Directional
Load Monitoring

Consumer Products

- Single Device
- Entire House
- Web Enabled
Commercial Applications

- Generation
- Load Monitoring
- Demand Management
Solar DC System

Generation
Solar AC System
Grid Connected System
Sub-Metering

AC Mains Distribution Panel to Individual Units

Sub-Meters

Load Monitoring
Commercial Sub-Metering
Data Collection
Other Sub-Metering Applications

- Building Management
 - HVAC
 - Lighting
- Computer/Server Arrays
- Factory Work Cells
- Processing Plant Stages
Vehicle Charging

AC Mains

Sub-Meter

Load Monitoring
Demand Management

- Monitoring
- Manual Load Shedding
- Automatic Load Shedding
System Configurations
Industrial Products

• Panel Instruments
• Systems
• Wireless Products
• Smart Meters
• Services
Panel Instruments
Energy Meter Parameters

- kWh delivered & received
- kVAr delivered & received
- kW real time
- kW per phase
- kVAr real time
- kVAr per phase
- kVA real time
- kVA per phase
- % Power Factor
- Power Factor per phase
- Total Amps
- Average Amps
- Amps per phase
- Average volts, line to neutral
- Average volts, line to line
- Volts to neutral per phase
- Volts line to line
- Average phase angle
- Phase angle per phase
- Frequency
Current Transformers

- Solid core for cost, reliability
- Split core for easy retrofit
- Specified by ratio, accuracy class & burden
- Burden sets maximum secondary load R
- Metering CTs may require heavy leads

<table>
<thead>
<tr>
<th>Size</th>
<th>Max Length</th>
<th>Gauge</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5VA</td>
<td>2 feet</td>
<td>18 AWG</td>
</tr>
<tr>
<td>(0.02Ω max)</td>
<td>3 feet</td>
<td>16 AWG</td>
</tr>
<tr>
<td></td>
<td>6 feet</td>
<td>14 AWG</td>
</tr>
<tr>
<td></td>
<td>8 feet</td>
<td>12 AWG</td>
</tr>
<tr>
<td></td>
<td>14 feet</td>
<td>10 AWG</td>
</tr>
<tr>
<td>5VA</td>
<td>22 feet</td>
<td>18 AWG</td>
</tr>
<tr>
<td>(0.20Ω max)</td>
<td>37 feet</td>
<td>16 AWG</td>
</tr>
<tr>
<td></td>
<td>60 feet</td>
<td>14 AWG</td>
</tr>
<tr>
<td></td>
<td>97 feet</td>
<td>12 AWG</td>
</tr>
<tr>
<td></td>
<td>156 feet</td>
<td>10 AWG</td>
</tr>
<tr>
<td>10VA</td>
<td>4 feet</td>
<td>18 AWG</td>
</tr>
<tr>
<td></td>
<td>77 feet</td>
<td>18 AWG</td>
</tr>
</tbody>
</table>
Systems
Current Transducer

- A:mV transducer
- Locate far from meter with no accuracy loss
"Green" Meter

- kWh in dollars
- Estimated cost per hour, based on current load
- CO₂ emissions in pounds, based on DOE data
- Estimated hourly CO₂ emissions based on current load
- Net metering, including utility delivered vs. user-generated power
Software
Wireless Products
Smart Socket Meters

- Accurate energy measurement
- Advanced power quality recording
- Wire or wireless communication
Services

- Energy Audit
- Remote Energy Monitoring
Case Study

Chemical Plant

<table>
<thead>
<tr>
<th></th>
<th>Production</th>
<th>Energy</th>
<th>Profits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>1943</td>
<td>357</td>
<td>93</td>
</tr>
<tr>
<td>After</td>
<td>1943</td>
<td>300</td>
<td>140</td>
</tr>
</tbody>
</table>

16% energy savings resulted in >50% profit increase
Test Equipment

- Power Monitors
- Power Quality Analyzers
- Power Dataloggers
Power Quality Analyzer

• PQ Parameters
 • Dips & Swells
 • Harmonics
 • Interruptions
 • Flicker
 • Inrush

• Graphical Display
 • Scope,
 • Phasor Diagrams
 • Setup Prompts

• Analysis
Calculations

APPENDIX A

MATHEMATICAL FORMULAS FOR VARIOUS PARAMETERS

Half-period Voltage and Current RMS Values

\[V_{\text{rms}}[i] = \sqrt{\frac{1}{N}} \sum_{n=0}^{N} V[n] \quad \text{Single rms voltage half-period } i + 1 \text{ phase} \]

\[I_{\text{rms}}[i] = \sqrt{\frac{1}{N}} \sum_{n=0}^{N} I[n] \quad \text{Compound rms voltage half-period } i + 1 \text{ phase} \]

\[A_{\text{rms}}[i] = \sqrt{\frac{1}{N}} \sum_{n=0}^{N} A[n] \quad \text{Rms current half-period } i + 1 \text{ phase} \]

\(N\): number of samples per half cycle (between two consecutive zeros)
\(n\): sample (0, 255)
1 phase (0, 1, 2)

MIN / MAX Values for Voltage and Current

\[V_{\text{max}}[i] = \max(V_{\text{rms}}[i]), V_{\text{min}}[i] = \min(V_{\text{rms}}[i]) \]
\[U_{\text{max}}[i] = \max(U_{\text{rms}}[i]), U_{\text{min}}[i] = \min(U_{\text{rms}}[i]) \]
\[A_{\text{max}}[i] = \max(A_{\text{rms}}[i]), A_{\text{min}}[i] = \min(A_{\text{rms}}[i]) \]

Power Quality Analyzer Model 3945-B

Various Types of Energy

\[W_A[i] = \sum_{n=0}^{N} W_A[n] \quad \text{Active energy consumed phase } i + 1 \]

\[W_{\text{VAR}}[i] = \sum_{n=0}^{N} W_{\text{VAR}}[n] \quad \text{Apparent energy consumed phase } i + 1 \]

\[W_{\text{VAR}}[i] = \sum_{n=0}^{N} W_{\text{VAR}}[n] \quad \text{for } W_{\text{VAR}}[i] > 0 \text{ Reactive inductive energy consumed phase } i + 1 \]

\[W_{\text{VAR}}[i] = \sum_{n=0}^{N} W_{\text{VAR}}[n] \quad \text{for } W_{\text{VAR}}[i] < 0 \text{ Reactive capacitive energy consumed phase } i + 1 \]

Total active energy consumed:

Total apparent energy consumed:

\[W_{\text{VAR}}[0] = W_{\text{VAR}}[0] + W_{\text{VAR}}[1] + W_{\text{VAR}}[2] \]

Total reactive capacitive energy consumed:

\[W_{\text{VAR}}[1] = W_{\text{VAR}}[1] + W_{\text{VAR}}[2] \]

Total reactive inductive energy consumed:

\[W_{\text{VAR}}[2] = W_{\text{VAR}}[2] \]

\[W_{\text{VAR}}[i] = \sum_{n=0}^{N} W_{\text{VAR}}[n] \quad \text{for } W_{\text{VAR}}[i] > 0 \text{ Reactive inductive energy consumed phase } i + 1 \]

\[W_{\text{VAR}}[i] = \sum_{n=0}^{N} W_{\text{VAR}}[n] \quad \text{for } W_{\text{VAR}}[i] < 0 \text{ Reactive capacitive energy consumed phase } i + 1 \]

Total active energy consumed:

Total apparent energy consumed:

\[W_{\text{VAR}}[i] = W_{\text{VAR}}[i] + W_{\text{VAR}}[i+1] + \text{VAR}[i+2] \]

Total reactive capacitive energy consumed:

\[W_{\text{VAR}}[2] = W_{\text{VAR}}[2] + W_{\text{VAR}}[1] + W_{\text{VAR}}[0] \]

Total reactive inductive energy consumed:

\[W_{\text{VAR}}[0] = W_{\text{VAR}}[0] + W_{\text{VAR}}[1] + W_{\text{VAR}}[2] \]
Connections
Summary

Key Factors in Equipment Selection:
• Permanent or Temporary Installation
• Turn-key or Build your Own
• Parameters to be Measured
• Mains Configuration
• Distance to Sensors
• Type of Display Needed
• Computer Interface/Software
• Control or Alarm Outputs
• Size, Cost…….
Providing rugged & reliable instrumentation for more than 68 years.

- 50 of the industry’s best manufacturers, plus proprietary Weschler products
- Full meter modification capabilities for all major brands
- Application assistance from experienced instrumentation specialists
- Instrument assembly & integration services

Our products are used worldwide in power plants, steel mills, chemical plants, paper mills and other industrial applications that require rugged, reliable and accurate instrumentation. We specialize in small lot orders and hard to find models. Call us when no one else has it – or call us first. We configure to your requirements.

WESCHLER INSTRUMENTS

Your best source for measurement, control and test equipment

Toll Free: 800-903-9870 • Fax: 800-903-9590
Email: info@weschler.com • www.weschler.com
Final Thoughts

- Energy costs are controllable
- Easier to reduce than other cost factors
- ARRA 2009 provides $20B for energy efficiency programs
- State & Federal tax incentives also available
- Measure & Verify required to substantiate any improvement

Thanks to E-MON, Conzerv, AEMC, Fluke & Yokogawa for providing material for this presentation.